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Abstract

In the past couple of years, techniques using 3D frame fields have emerged to design hexahedral meshes[1,2]. Those methods
are based on a two-step process where a 3D frame field is built by assigning a frame to each cell of a tetrahedral mesh, then a
parametrization algorithm is applied to generate a hexahedral mesh. In this paper, we propose a novel algorithm to generate block-
structured hexahedral meshes for any CAD domain Q. This work differs from previous ones in several points: (1) the proposed
approach does not start from a pre-meshed boundary; (2) The frame field initialization does not put singularity lines around the
medial object of Q; (3) Frames are assigned to the vertices and not to the cells of the tetrahedral mesh; (4) We do not perform a
parametrization process but we generate a block structure that partition € in meshable regions.
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Fig. 1. Main steps of the proposed approach. In (a), the tetrahedral mesh through which the geometry is known. In (b), a 3D frame field is
generated. In (c), a singularity graph is extracted leading to a block structure. In (d), a mesh obtained from the block structure.
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1. Introduction

Depending on the numerical approximation methods, hexahedral meshes are preferred to tetrahedral meshes due
to their layered structure that can be aligned along the boundary of 3D domains. Moreover, they have interesting
numerical properties, such as a reduced number of elements and a high approximation accuracy in numerous simula-
tions in physics and mechanical engineering. However, generating high-quality hexahedral meshes is a very difficult
and time-consuming task. Indeed, meshes are expected to abide by a number of rules to be of any use [3]: (1) To
align elements along the boundary and inner directional constraints. This means having hexahedra layers along each
boundary or constrained surface, and rows of hexahedra along each boundary or constrained edges. (2) To maximize
the hexahedra quality by keeping their distortion to a minimum. To achieve this, singular edges, i.e. edges with more
or less than four incident hexes, have to be introduced inside the volume to reduce global distortion, while being kept
at a minimum to reduce local distortion. The work presented in this paper is motivated by generating such meshes.

We consider that the automatic generation of high-quality hexahedral meshes requires to have a geometric informa-
tion inside the volume and not only on the boundary. Such an information can be provided by a frame field, as shown
in [1,2,4]. In [4], authors provide theoretical foundations to characterize frame fields that are suitable for hexahedral
mesh generation but their frame field computation is driven by a meta-mesh that must be provided by the user. In
[1,2], the frame field is generated by solving a highly non non-linear energy function. A caveat of such methods is
the impact of the initial solution that leads to a solution corresponding to local minima of the objective function. In
both works, the initial solution is obtained through a simple straightforward process that can lead to non-optimal final
solution:”...propagation-based frame field initialization likely generates singular edges around the medial axis of the
volume, and most of them cannot be eliminated by frame optimization”[2]. This leads to potential high distortions for
the resulting hexahedral elements, or even to unnecessary singularities.

In this paper, we present a method to generate block structures that can be used to generate full-hexahedral meshes.
Starting from a tetrahedral mesh T of a domain Q with sharp features, we build a continuous frame field Fq on T, as
a continuous piecewise linear frame field extending a discrete unit frame field that we compute on the vertices of T.
We extend the approaches proposed in [1,2] by providing a novel initialization step avoiding clusters of singularities
in the vicinity of the medial object of Q. Then a singularity-graph is extracted from Fgq to partition € is easy-to-mesh
parts. Our approach differs from those proposed in [1,2] on many points:

1. The quadrilateral mesh of the surface is not a parameter of our approach. We start from a geometrical domain
Q and a tetrahedral mesh T of this domain. Both the surface and the volume mesh of Q are generated by our
approach.

2. Internal 3D frames are not defined by taking the nearest 3D frame defined on the boundary, but by solving an
iterative process, which consists in defining internal 3D frames that are in stable areas as first. This is essential
to control the location of singularities, since the optimisation problem that we will consider is non linear and the
result strongly depends on the initial solution.

3. 3D frames are not associated to tetrahedral elements but to the vertices of To. As a consequence, we do not have
a discrete singularity graph made of vertices and edges of Tq, but a singularity graph, which is built by applying
linear interpolation into each tetrahedron containing a singularity of the 3D frame field. By this way, we avoid
the topological cleaning process.

4. We do not generate an atlas of parametrizations, which is very sensitive and expensive to compute. We use
the singularity graph to define a domain partitioning and then a block structure, where each bloc can be easily
meshed using a simple mapping algorithm.

1.1. Related Work

All-hexahedral mesh generation has been widely studied for decades. A comprehensive survey is available in
[5]. However, automatic algorithms providing good quality meshes for any domain are yet to be designed. As a
result, semi-automatic methods based on robust algorithms designed for restrictive categories of domains, like multi-
sweeping[6,7], were developed to help decomposing domains into meshable regions. Thus, the automatic generation
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of hexahedral meshes for any geometric 3D object is still an open problem. Starting from a pre-meshed boundary sur-
face, pure geometric approaches like plastering [8] or H-morph [9] algorithms have been proposed, while some other
works have been based on pure topological approaches [10,11]. In both cases, the success was limited: some unfilled
cavities remain or inverted cells and negative Jacobian cells can be generated. By relaxing the constraint of starting
from a pre-meshed boundary that must be preserved, grid-based algorithms [12,13] or unconstrained plastering [14]
provide encouraging examples of all-hexahedral meshes for arbitrary domains. Currently, grid-based [12,13] methods
offer the simplest and most robust approach, but as the PolyCube method[15,16], it suffers from two flaws : the influ-
ence of the box orientation on the final result, leading to unpredictable results, and the location of the worst quality
elements near the boundary while the quality of elements in this area is often critical for numerical approximation
methods.

Quad mesh generation methods have recently been improved by using surface parametrization techniques on
cross fields that are defined on a triangular surface [17,18]. Another approach consists in using the cross field to
partition the domain into quadrilateral shaped blocks[19]. While the attempts to extend the former to hexahedral
meshing have shown promising results [2,4], a generalization of the latter to 3D has yet to be designed. The Morse-
Smale complex technique[20] provides another approach to quad meshing that has yet to be extended in a robust
all-hexahedral meshing algorithm. The interested reader can see [21] for a recent survey.

Frame field has several definitions in the literature; for the purpose of this paper, we consider a frame to be the
3D extension of a cross, that is 3 directions orthogonal one to the other. Cross fields have been widely studied with
applications to surface meshing and texture mapping. 3D Frame fields, on the other hand, have only been studied for
the last few years. They are a guideline to drive meshing algorithms by providing geometric orientations inside the
volume and not only on the boundary. Several papers [1,2,4,22] provide very interesting results. NIESER et al.[4]
generate a frame field based on a given meta-mesh. HuanG et al. [1,22,23] and L1 et al. [2] provide a way to smooth a
given frame field by minimizing an energy function, but their methods use rough initializations that can lead to issue
that cannot be removed with a smoothing step.

1.2. Approach and Paper Outline

Starting from a tetrahedral mesh T that discretizes a geometric domain €2, our aim is to generate a smooth discrete
frame field where a single frame is associated to each vertex of T. Definitions about frame fields are given in Section
2. Our approach is decomposed in two main steps that will be respectively described in Sections 3 and 4 (see Fig
1): (1) First a 3D frame field is generated. In order to assign a frame to every vertex of T, we follow an advancing-
front algorithm that consists in introducing frames in such a way that the smoothest areas of Q will be filled at first.
All the operations performed during this step are based on a quaternion representation of the frame that allow us to
perform frame interpolation. A final global smoothing is performed as in [2]. This process relies on the representation
of frames by Euler angles. (2) Then a singularity-graph defining the 3D frame field topology is extracted. As the
considered frame field is obtained by linearly extrapolating a per-vertex discrete unit frame field, singularity lines are
not a set of edges of T but are smoothly defined into the tetrahedral elements of 7. Boundary singularity lines are
computed in a second time. Before concluding, Section 5 provides some experimental results we obtained.

2. 3D Frame fields and hexahedral meshing
2.1. 3D frames to model hexahedra orientations

We define a 3D frame F as being a 3-uple {u, v, w}, with u, v and w three unit 3D vectors such that u.v = 0 and
w = u A v. Considering a hexahedral element H, which has 3 main directions linking its pairwise opposite faces, 24
frames can thus represent it. This set of frames is invariant under rotations of 7 around one of its three axis and forms
an equivalence class: let F be a frame, we note this class [F]. In other words, it corresponds to the cubical symmetry
group G (any map in SO(3) which maps coordinate axes to coordinate axes). Such a definition of 3D frames is an
intuitive 3D extension of crosses or 4-rosys as defined in [18] and that are invariant under ’57 rotations. But, while a
4-rosy can be represented by an unique 2D vector that allows to perform well-founded mathematical computation[24],

no such representation vectors can be exhibited in 3D. In order to perform operations on frames, we use a group law
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+ that combines any two elements F, and F;, of an equivalence class [F] to form another element of [F]. For instance,
let F; and F; be two frames of [F], the linear combination oF; + SF; must be a component of [F] (see Figure 2). To
define this law, we use unit quaternions to represent frames.

Fig. 2. Adding two equivalent frames must provide a third equivalent frames and not be computed as the average of the frames vectors.

Considering (1,1, j,k) as being a basis of R* such that i* = j?> = k?* = ijk = —1, a unit quaternion q is defined by
q = w+ xi +yj + zk with w? + x*> + y> + z2 = 1. For any frame F; = {u;, v;, w;} is associated the unit quaternion ;
that corresponds to the rotation matrix transforming {x(1, 0, 0), y(0, 1,0), z(0, 0, 1)} into {w;, v;, w;}. Let F; to F; be two
frames we want to compare. Let q; and q; be their associated quaternions, then q;q j‘l corresponds to transforming
F; into F;. Then we define the distance d;; between two quaternions F; to F; as

L= 1 — . ._l
diy = min 1~ | g.(qia, ") | ()

where g is a quaternion corresponding to a rotation of G. Then F; € [F;] if and only if d;; = 0. Note that we do not
compute an accurate geometric distance on the sphere in IR* but a simple dot product which is less expensive in terms
of computational cost.

We also use quaternions to perform linear interpolation between frames. Let F; and F; be two frames, the frame
F;j = oF; + pF;, witha > 0, 8 > 0 and @ + B = 1, the quaternion associated to F; is

aq; +pgq;
lq; + Bgq;l

with g, satisfying Equation 1, and g = g, if g,,.(q,q j‘l) > 0, —g,, otherwise. This formulation can be extented to any
number of frames.

We also represent frames by Euler angles to perform a global smoothing of the frame field (as in [2]). The main
benefit of this representation is to intrinsically constraint solutions onto the unit sphere. On the contrary, solving
systems using the 4 coordinates of the quaternions would imply using extra constraints to preserve their unit norm.
In fact, those representations are complementary. Let a 3D frame F and q its associated unit quaternion. Every unit
quaternions represents a rotation that can be decomposed using Euler angles. We use an XYZ decomposition where
q= ngng, with « the rotation angle around axis X, 6 the rotation angle around axis y and y the rotation angle around
axis z.

2.2. Discrete and continuous frame fields

Given a tetrahedral mesh T, we define a discrete frame field by assigning a frame to each vertex of Tq. This field
can be extended to a continuous frame field on T as a piecewise linear interpolation in each tetrahedron of Tg. In
such a field, the magnitude of frames can be non-unitary and singularities are located in points of T where frame
magnitude is zero. Extending a discrete unit frame field to a continuous non-unit one ensures to this latter to have
singularities that are gathered in a network of lines, similar to the singularity graph in [4].

Proposition 1. Considering a continuous frame field F on Tq built from a unit frame field defined on the vertices of
Tq, a singularity of F cannot be isolated.

Proof: Due to the linear interpolation process used to build frames inside tetrahedra, having a singularity inside
a tetrahedron 7 means that one of the triangles adjacent to T contains a singularity too. The reciprocate is true.
Therefore, singularities can not be isolated and are structured in lines of singularities. For classical vector fields,
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a singularity is located where the magnitude of a vector is zero. A singularity is then characterized by an integer
number, its index, describing the behavior of the field in the vicinity. On 2D manifolds, this notion was generalized to
frame-fields [17,25] and used to show that the valence of a singularity is either equal to 3 or 5 in 4-rosy fields[19].

Proposition 2. Considering a continuous frame field F on Tq built from a unit frame field defined on the vertices of
To, the degree of singularity lines is 3 or 5.

The proof of this proposition is similar to the proof provided for the 2D case in [19] by considering each face of each
tetrahedron individually. As we assign frames to vertices and not to tetrahedral elements, a singularity line either ends
on 0Q, inside Q or meets other singularity lines inside the volume Q. Having singularity lines that end inside Q can
not happen with the approaches of [1,2,4]. Moreover, we assign frames to the vertices of T to generate a continuous
frame field over Q by piecewise linear interpolation, while tet-assigned frames are used in [1,2,4] to define a discrete
singularity graph composed of singular edges of Tq. As a consequence, we do not have to perform topological
cleaning to get smoother singularity lines.

3. Boundary-aligned frame field generation

The first part of the proposed method consists in generating a frame field starting from a tetrahedral mesh T
without any quadrilateral mesh of Q. Initially, frames are fully defined onto the geometric curves of (2, i.e lines of
boundary edges where the dihedral angle between adjacent boundary triangle is greater than a threshold and frames
are partially defined onto the remainder of 9Q. The left part of Figure 3 illustrates it. In (a), frame F is initially aligned
with the tangent to the curve in V and the average of the normal to the triangles in the vicinity of V. In (b), only the
red component of frames F; to F5 is initially aligned with the normal to dQ. Other components of these frames will
be defined during the frame field generation.

Fig. 3. On the left, an example of frame field with two focus on initial conditions: in (a), a frame F is completely defined at the beginning, while
only one component of the frames depicted in (b) is known. On the right, balls are depicted to show the frames involved to evaluate the smoothness
in the vicinity of v. As balls grow, the smoothness decreases.

In order to obtain a smooth field, we perform a global smoothing similar to the one done in[2], which consists in
minimizing an energy function. This function is highly non-linear and thus the result strongly depends on the initial
values that are assigned to each vertex of T. In the first part of this section, we present an initialization process,
which yields empirically lower energy than previous initialization methods [1,2,4]. In the second part, we describe
how the global smoothing proceeds.
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3.1. Selection of the frame to insert

In order to initialize the unit discrete frame field, we use an advancing-front algorithm that can be sum up as
follows:

1. Starting with a small set of vertices Sy of Tg for which frames are already assigned (on the geometric curves of
Q at the very beginning), select a new vertex v adjacent to a vertex of Sy;

2. Interpolate the frames of the vertices of Sy adjacent to v in order to define the frame at v;

3. Repeat steps 1 and 2 until a frame is assigned to every vertex of Tq.

The order in which vertices are selected vastly impacts the location of singularities. Indeed, due to the interpolation
process, singularities will tend to be close to the last inserted vertices. Moreover, as the energy computed in the
smoothing part of the algorithm is non-convex, the reached minima is local and not global. In practice, this means
that the location of singularities will remain roughly the same after the smoothing step. In our case, we select the
vertex v that is located in the steadiest area of Q) in the meaning of a measure of the field smoothness. To define this
smoothness measure let us introduce some notions. The right part of Figure 3 illustrates these notions in 2D. Let v be
a candidate vertex to add to Sy, i.e a vertex adjacent to at least one vertex of Sy. We note F,, the local frame computed
in v by interpolating the frames assigned to the vertices of Sy adjacent to v. The weight associated to each frame F,,
that participates to define F/, is function of the distance between v' and v. We denote B, , the ball of center v and radius
r and we define the function d(B,,) as

max d(F;,F,) 2)
v,eB(v,r)
where F; is the frame assigned to the vertex v; and the distance between frames F; and F, is computed using Equation
1. To select the vertex v to insert into Sy, we can not arbitrarily choose the value of . Thus, considering R as being
the radius of the bounding box of Q, we compute for each candidate vertex v of T the quantity

R

max d(F;,F,)dr. 3)

r=0 Vi€Bv,r)

This value provides an estimation of the field smoothness at v : if the field is steady on a large area around v, then
there exists a value 7" such that Equation 2 is null for any r < . When a difference between frames happens at a
distance ry, it contributes accordingly to the amplitude of this change. This estimation provides good results when 9Q
is mostly planar, but leads to the insertion of singularities in the close vicinity of spherical part of Q. To alleviate
this problem, the result of Equation 3 for a vertex v is weighted by the distance between v and 9. This enforces the
algorithm to first insert the points closer to dQ. Figure 4 illustrates how Sy is progressively built. It can be seen that
some vertices located near the medial axis are inserted early in the process due to being in a zone where the field is
steady.
Remark. The complexity time of this initialization step is at worst O(n?) with n the number of vertices in Tq,.

3.2. Frame Field Optimization by global smoothing

The frame field is smoothed in a similar way as in [2]. Given two frames F| and F, and their respective quaternions
q; and q,, the quaternion q = qqu‘1 transforms F into F,. Considering the corresponding rotation matrix M_,,, a
measure of the closeness between F; and F, can be defined as :

Epy = ) [H(Myoal., D) + HOM i, D)) @)

l

where M., i] and M;_[i, ] denote the i” row and column vector respectively, and H(v) = v3v3 + Vv +v2v3. The
function H is invariant on [F]. This measure can be expressed on any edge ¢;; of T between the frames of its end
vertices v; and v;. We get the following energy function for the whole field :

E= ) E; (5)

eij€Th
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Fig. 4. A domain at different stages of the frame assignement process. All the vertices of red tetrahedra have an assigned frames, while blue
tetrahedra have at least one vertex without any frame.

where 7T, 5 is the set of edges of Tg. However, trying to minimize this energy right away would generate general
matrices and not rotational ones. Instead of applying a post process that would consist in projecting the obtained value
onto the unit sphere, and thus introducing numerical errors, we use Euler angles, as done in [2]. Inner and boundary
frames are then distinguished. An inner frame F; has three degree of freedom: each of the matrices representing it can
be written

M; = Ry(a@i)Ry(8;)R,(y:)

where «;, 6; and y; are the rotation angle around axis X, axis y and axis z respectively. A boundary frame at a vertex V
has only one degree of freedom 6. It can be expressed

{cos(O)T1 + sin(0)T,, — sin(0)T1 + cos(6)T,, N}

with N the normal to dQ at V and Ty, T, two orthogonal tangent vectors relying in the tangent plane of 9Q at V. The
minimization of the nonlinear function E of Equation 5 is performed using the same L-BFGS method than the one
used in [2]. This final step improves the generated field but not in the same proportions than [1]. Indeed singularities
are better located at the end of our initialization process. Consequently, E converges much quicker, in 10 to 25
iterations instead of several hundreds, confirming that the proposed initialization step leads to a better global solution
in terms of the energy function of Equation 5.

3.3. Benefits of the initialization process

The rough initialization process proposed by [2] can lead to frame fields where singularity lines are along the
medial object of Q. In fact, as their approach starts from a quadrilateral mesh of 0Q, the resulting singularity graph
strongly depends of this boundary mesh. Left and middle of Figure 5 shows an extreme example of how singularities
can be gathered around the medial object. In this case, even after a global smoothing, the obtained field has singularity
lines that are too closely intertwined to be of any use. Our initialization process, on the other hand, generate singularity
lines that are separated one from another (top row of Figure 5).

We also evaluated our initialization process in 2D. The right part of Figure 5 shows the resulting fields obtained
either using our approach (top) or by assigning the vertices by only considering their distance to the boundary (bot-
tom). In the second case, the two singularities are clustered on the medial object. While the global smoothing that
follows the initialization step is able to improve the results somewhat, the resulting field is still very distorted, and the
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Fig. 5. Tetrahedral elements traversed by singularity lines of the 3D frame field with the proposed initialization process (top row, left and middle)
and a simple initialization where the value of a frame in Q is initialized with the value of the frame int the closest vertex on 9Q (bottom row, top
and middle). For comparison, on the right, we show the 2D singularity placement with our initialization process (top) and an initialization process
that assigns to any innner vertex the frame defined on the nearest boundary vertex (bottom)

singularities are still very close one to the other. It is due to the fact that the global smoothing could only find the clos-
est local minima of the energy function. On the other hand, our approach gives a natural placement of singularities,
and provide results consistent both with the usual manual decomposition of such a domain and the results obtained
through state-of-the-art algorithms ([17-19]).

4. Singularity graph extraction

The second step consists in extracting the topological features of the frame field to build a singularity graph. Figure
6 illustrates the global process that we detail in the following. We first detect and build inner singularity points p;
and p, and inner lines. Then, for each boundary singularity points, boundary singularity lines are built leading to
an incomplete partitioning of Q. Finally, boundary singularity lines are connected and inner surface patches can be
derived.

Fig. 6. The singularity graph is built in an iterative way by propagating singularity lines inside Q then on Q before partitioning Q in several
blocks.
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4.1. Detection of the inner singularity points and lines

Defining a continuous frame field F on T starting from a discrete unit frame field defined on the vertices of T
implies that we do not have isolated singularity point. As a consequence, we detect singularity points and lines in T
by analyzing faces of Tq. To detect if a face f is traversed by a singularity line, we consider the behavior of the frame
field F along the loop defined by the adjacent edges of f: frames defined at the vertices of f are projected onto the
2D plane of f to define a local cross field where a singularity index, similar to the notion of Poincaré index for vector
fields, can be computed [17,25].

Considering a tetrahedral element ¢t € T, either one, two or three of its faces can be traversed by a singularity line
l;. In the first case, /; ends up into # meaning that we can not derive a block structure for Q. In the second case, ¢ is
traversed by /; and the intersecting points between /; and ¢ can be computed by finding the zeroes of the frame field in
each traversed face of 7. In the latter case, we have a singularity point, that is a meeting point of singularity lines in ¢
or in a cluster of tetrahedra including ¢.

Singularity lines are then built as piecewise linear lines joining two inner singularity points or an inner singularity
point to dQ. The list of points defining a singularity line /; is made of the intersection points between the faces of T
and /;. We apply a post process smoothing algorithm to obtain smoother curves.

4.2. Extraction of the boundary singularity lines

Once inner singularity lines defined, boundary singularity lines must be built. Starting from each boundary singu-
larity point p;, i.e. a boundary ending point of an inner singularity line, we spread up singularity lines from p; onto
0Q. To do it, we use a fourth order Runge-Kutta method, locally to each crossed triangle 7' € dQ. This process is used
to spread all the boundary singularity lines emanating from a boundary singularity point. Such lines end up either on
another boundary singularity point (like the line /; in Fig 7-a) or on a geometric curve (like the line /; in Fig 7-a).
If it ends in a singularity point, the line is spread again in the opposite direction and blend with the previous one to
ensure that the process does not depend on the order in which singularities are treated (see Fig 7-b where the line /; is
different of the one presented in a). Technically, when we spread a boundary line from a boundary point, it can meet
another singular point or miss it due to numerical approximations and the refinement level of 7. We thus consider
that a boundary line end up on a singular point whenever it comes close enough to it during the integration process.
The distance at which we reconnect them should be determined according to the size of the mesh that is desired, as it
can change the partitionning (see Fig 8). Getting a robust algorithm is then very tricky even if there is no theoretical
limitation.

(@) b)

Fig. 7. Boundary singularity lines built on a surface. Lines starting in p; are given in (a), while lines coming from p, are given in (b). Note that
the linking line between p; and p, was built twice and then blended to obtain a symmetric process.

4.3. Propagation and connection of the boundary singularity lines

First boundary singularity lines are spread up from boundary singularity points. Then a boundary singularity line
l; connects boundary singularity points or reach a geometric curve C defined as a line of edges on dQ. In this case, /;
is propagated on the other side of C or connects to a line /> defined on the other side of C. In Figure 9-a, the boundary
lines defined on the two sides of C are not connected. Then left lines are connected in b and right ones in c. Note that
the criterion to connect lines to singularity points or boundary points is once again based on a threshold value that
may change the topology of the partitionning (see Fig 8).
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Fig. 8. Depending of some slight variations in the geometric domain boundary, singularity lines do not necessarily connect the red and blue
singularity points. In (a), they are connected, while in (b) and (c) they are not.

Fig. 9. Connection of boundary singularity lines that reach a common curve

5. Experimental results

Our approach has been evaluated on various tetrahedral meshes that discretize CAD models. There is no boundary
frame field provided as an input. Figure 10 and Figure 11 illustrate the impact of the mesh resolution onto the
algorithm. From left to right on Figure 10, meshes have respectively 5738, 58871 and 175079 cells. We can see that
the tetrahedra set containing singularity lines becomes sharper and thinner demonstrating that our method seems to
converge when the geometric model is better approximated. On Figure 11, the obtained singularity graphs are similar:
the algorithm is thus robust enough as soon as the domain is sufficiently approximated.

Figures 13, 14 and 12 show all-hexahedra meshes obtained for different domains. The singularity graph always
defined a block structure adapted to hexahedral meshing. We can notice that the symmetry of the domains is not
totally preserved in the generated frame fields. Better results could be obtained with more refined meshes.

6. Conclusions and Future Work

In this paper we presented a novel algorithm to generate block-structures that are adapted to hexahedral mesh
generation. Following [1,2], a frame field is used to guide the block-structure creation but our work is original in
many aspects: (1) the proposed algorithm does not require a pre-meshed boundary nor a predefined boundary cross
field; (2) Using an optimized initialization step, we alleviate a drawback of [1,2], preventing lines of singularities to
be clustered around the medial object and lowering the energy value of the field; (3) We use a per-vertex formulation
that allows us to generate smooth singularity graphs without performing post-process topological operations on Tgq;
(4) Instead of performing a parametrization algorithm, a block structure is built on the singularity graph of the frame
field.

Improvements and future works have to be done to get a more robust algorithm. For instance, it would be interesting
to use an adaptive process where a coarse mesh would be used to get a first estimation of the solution before refining it
in the vicinity of the singularity points and lines. Such an improvement could significantly reduce the computational
cost of the initialization step. Moreover, the main drawback of the proposed approach is that we have no theoretical
guarantee that the generated frame field corresponds to the structure of a hexahedral mesh. To achieve this, we believe
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Fig. 10. Three approximations of a domain. Initial meshes are given in the first row; frame fiels obtained after the first step of the algorithms are
given in the second row; In the third row, only the cells intersected by inner singularity lines are visible.
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Fig. 11. Inner singularity lines and complete singularity graphs for the three meshes used in Figure 10.

that it is necessary to take into account the global structure of hexahedral meshes in the formulation of the energy to
minimize.
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Fig. 12. Frame field in (a) and corresponding hexahedral mesh in (b) for a non-sweepable domain.
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Fig. 13. In the first row, a symmetric domain where singularity points are not totally aligned between the front and the back face leading to a
slightly twisted structure. In (a), the non-symmetry of the field on the front face can be seen and in (b) in the whole inner domain. In (c) and (d),
two hexahedral meshes obtained from the block-structure with different levels of refinement are provided. In the second row, the singularity graph
shown in (e) allows to generate a full hexahedral mesh that is presented in (f) with two innner cuts in (g) and (h).
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